
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
Tel.: +4858 34

E-mail addr
Journal of Sound and Vibration 295 (2006) 461–478

www.elsevier.com/locate/jsvi
Longitudinal wave propagation. Part I—Comparison
of rod theories

Marek Krawczuka,b,�, Joanna Grabowskaa, Magdalena Palacza

aInstitute of Fluid Flow Machinery PAS, Fiszera 14, 80– 952 Gdańsk, Poland
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Abstract

The paper introduces new four spectral elements for analysis of longitudinal wave propagation in structures. The

developed elements are based on the elementary, Love, Mindlin–Herrmann and three-mode theories. Certain differences in

wave propagation behaviour are observed for the analysed models. For lower excitation frequencies the results obtained

for all models are similar and from a practical point of view the spectral element based on the Love theory is adequate. For

high frequency excitation these differences are considerable and only the Mindlin–Herrmann or three-mode models give

correct results.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Wave propagation in structural elements has been studied over a considerable period of time. Although
mathematical frameworks are well developed, wave propagation problems in real scale engineering structures
are an open area of research. The main problems in analysis of propagation of high velocity waves in
distributed structures are that spatial discretisation must be accurate to capture the amplified effect of wave
scattering at structural discontinuities. A conventional modal method, when extended to the high frequency
regime, becomes computationally inefficient since many higher modes that participate in motion will not be
represented. For a specific geometry and finite, periodic or semi-infinite boundary conditions, many solution
techniques have been reported [1–3]. Among many frequency domain methods, the spectral element method
[4] has been found suitable for analysis of wave’s propagation in real engineering structures.

The spectral element method utilises the exact solution of differential equations governing the problem. This
exact solution is used as an interpolating function for the spectral element formulation. The use of the exact
solution in the element formulation ensures the exact mass and stiffness distribution. It means that only one
element can be used for modelling a very large part of a structure, under the condition that this part has no
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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discontinuities. Hence, the problem size is much smaller in comparison to the conventional finite element
formulation.

For example, in order to properly model wave propagation at frequency about 200 kHz, in a cantilever rod
with length of 6m and cross section 0.02� 0.02m almost 465 rod finite elements are needed. It means that the
length of one element is about 0.012m, and it seems that they are not rods in a physical sense. Obviously it is
possible to use other types of finite elements (e.g. 3D-solids), but in this case the size of problem is even greater.
It means that numerical calculation time is long and errors of numerical integration can be considerable. The
spectral analysis allows use of one spectral element for any length provided there are no changes in the cross
section or material parameters. If that happens it is very simple to join several spectral elements in a way that
is commonly used in finite element methods.

The spectral element program architecture is very similar to the architecture of a typical finite element
program as far as the assembly and the solution is considered. Firstly, the excitation function is split up into a
number of frequency components using the forward Fourier transform. Next, as a part of a big frequency do-
loop (as opposed to a do-loop over time step in the conventional finite element formulation), the dynamic
stiffness matrix is generated, transformed and solved for every frequency. This directly yields to the frequency
response function of the analysed problem. The frequency domain responses are then transformed to the time
domain using the inverse Fourier transform.

The spectral elements are available for rods [5–6], beams [7–8], plates [9–11], and layered solids [12]. For rod
elements one can find spectral elements developed on the basis of elementary rod theory; however, there are no
spectral elements which are based on modified theories. Such elements would be suitable for analysis of waves
propagating at higher frequencies. Apart from that they take into account more realistic assumptions
concerning longitudinal and transverse deformations. Problems of longitudinal wave propagation have been
analysed up till now using the elementary theory, under assumption of a constant longitudinal displacement
along the cross section of the rod and also neglecting transverse deflection [5–6]. The real deformation of the
rod is more complicated, and in broad terms three characteristic types of behaviour can be identified. The first
is that the longitudinal displacement has a non-zero mean value (Love rod theory), the second is that the
transverse deflection is nearly linear (Mindlin–Herrmann rod theory), and the third is that the longitudinal
displacement has almost a parabolic distribution (three-mode rod theory). It means that higher order theories
should have two additional deformation modes—the transverse deflection and the parabolic longitudinal
displacement along the rod.

In the presented paper new spectral elements for analysis of longitudinal waves in rods are developed.
The elements are based on the Love [13], Mindlin–Herrmann [14], and three-mode theories [15]. In the
case of the Love theory, the spectral element has two nodes with one longitudinal degree of freedom at
each node. For the Mindlin–Herrmann theory the spectral element has two nodes and two degrees of
freedom at each node—the longitudinal displacement, and a rotation which describes transverse
contraction. In case of the three-mode theory the element has two nodes and three degrees of freedom at
each node. These are the longitudinal displacement, the rotation which describes the transverse contraction
and second rotation, which models the parabolic distribution of the axial displacement along the height of the
element.

A procedure for building the explicit form of the dynamic stiffness matrix for all the models is precisely
explained. Numerical examples presented illustrate the wave propagation process in rods for every model,
respectively. Considerable differences in the behaviour of longitudinal waves in rods for the modified theories
are shown what is widely described in the paper.
2. Elementary theory

A spectral element model of rod based on the elementary theory is shown in Fig. 1a. The element has length
L and constant cross section A. There are two nodes with one longitudinal degree of freedom per node.

The elementary theory assumes that the axial deformations along the neutral axis of the rod are the same in
all points of the cross section, and also the transverse deflections are negligible. The differential equation of the
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Fig. 1. The spectral element models for the elementary and Love theories (a), the Mindlin–Herrmann theory (b) and the three-mode

theory (c).
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problem can be written as follows:

EA
q2u0

qx2
� rA

q2u0

qt2
¼ 0, (1)

with the boundary condition on u0 as

u0; Qu ¼ EA
qu0

qx
, (2)

where u0 is the average axial displacement, Qu means the longitudinal force, E denotes the Young’s modulus,
A is the area of the cross section of the rod and r is the density of the material.

The spectral element for this theory was established by Doyle [5]. The dynamic stiffness matrices for the two
node spectral element Kdf and the throw-off element Kdt can be presented in the following forms:

Kdf ¼
ikEA

1� e�2ikLð Þ

1þ e�2ikL �2e�ikL

�2e�ikL 1þ e�2ikL

" #
; Kdt ¼ ikEA, (3)

where k is the wavenumber calculated as a function of the frequency o and material properties r, E:

k ¼ �o

ffiffiffiffi
r
E

r
. (4)
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3. Love theory

A spectral element model of rod based on the Love theory is also presented in Fig. 1a. The element has the
same length and the constant cross section as the one calculated with the elementary theory. The
aforementioned element has two nodes with one longitudinal degree of freedom per node. The Love theory
modification is based on the assumption that each material point of the rod has a transverse velocity. It means
that the kinetic energy is affected by additional terms; however, the strain energy is the same as for the
elementary rod theory. The displacement field is also the same, and the differential equation of the problem is
only slightly modified. This can be expressed in the following form [13]:

EA
q2u0

qx2
þ n2rJ

q2

qx2

q2u0

qt2

� �
� rA

q2u0

qt2
¼ 0, (5)

with the boundary condition on u0 as

u0; Qu ¼ EA
qu0

qx
þ n2rJ

q2u0

qt2
. (6)

The term J denotes the polar moment of inertia of the rod cross section, and n is the Poisson ratio of the
material.

The wavenumber for this model is given by the relation:

k ¼ �o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA

EA� n2rJo2

s
. (7)

It should be noticed that the wavenumber k, in contrast to the elementary theory, can be purely imaginary.
In such case the transverse motion is absorbing all the input energy.

3.1. Rod spectral element for Love theory

The general longitudinal displacement of a rod can be written in the same form as for the elementary theory:

û0 ¼ A0e
�ikx þ B0e

�ikðL�xÞ. (8)

Constants A0 and B0 can be found from the following nodal conditions:

û0ðx ¼ 0Þ ¼ q̂1; û0ðx ¼ LÞ ¼ q̂2, (9)

which lead to the following system of equations:

A0

B0

" #
¼

1 p

p 1

" #�1
q̂1

q̂2

" #
, (10)

with p ¼ e�ikL.
The forces within the element can be expressed using formulas from Eq. (6) by differentiating the assumed

displacements. The nodal forces can be found using the following nodal conditions:

F̂1 ¼ EA
qû0

qx
þ n2rJ

q2û0

qt2
for x ¼ 0;

F̂ 2 ¼ EA
qû0

qx
þ n2rJ

q2û0

qt2
for x ¼ L:

(11)

Taking into account formulas for the axial displacement the nodal forces are given by the following
expression:

F̂1

F̂2

" #
¼

ik �EAþ rn2Jo2
� �

ik �EAþ rn2Jo2
� �

p

ik �EAþ rn2Jo2
� �

p ik �EAþ rn2Jo2
� �" #

A0

B0

" #
. (12)
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Then using the formulas for calculating constants A0 and B0 as a function of the nodal displacements, the
relation between the nodal forces and the nodal displacements can be calculated. The square and symmetric
matrix in this relation denotes the dynamic stiffness matrix Kdf of the spectral element based on the Love
theory.

3.2. Throw-off spectral element for Love theory

For the throw-off element based of the Love theory the general longitudinal displacement for a rod can be
written is the same form as for the elementary theory:

û0 ¼ A0e
�ikx. (13)

The constant A0 can be found from the following nodal condition:

û0ðx ¼ 0Þ ¼ q̂1, (14)

which leads to the equation:

A0 ¼ q̂1. (15)

The forces within the element can be expressed using the formulas from Eq. (6). The nodal forces can be
found using the following nodal condition:

F̂ 1 ¼ EA
qû0

qx
þ n2rJ

q2û0

qt2
for x ¼ 0. (16)

Taking into account the formulas for the axial displacements and the lateral contractions the nodal forces
are given by the expression:

F̂ 1 ¼ ikð�EAþ rn2Jo2Þq̂1. (17)

The relation in the brackets in Eq. (17) denotes the dynamic stiffness matrix Kdt of the throw-off spectral
element based on the Love theory.

4. Mindlin–Herrmann theory (two-mode)

A spectral element model of rod based on the Mindlin–Herrmann theory is presented in Fig. 1b. The
element has the same geometry as in two previously described cases. It has also two nodes with two degrees of
freedom per node (the longitudinal displacement and the rotation). The Mindlin–Herrmann theory can be
developed taking into account independent shearing deformation due to transverse displacement. The
displacements in Mindlin–Herrmann theory of rods are assumed as follows [4]:

uðx; yÞ ¼ u0ðxÞ;

vðx; yÞ ¼ c0ðxÞ � y;
(18)

where c0 denotes the transverse contraction.
This approach takes into account the lateral displacements but ignores the non-uniform distribution of the

axial displacement in the cross section of the rod. The differential equations for the Mindlin–Herrmann
theory, governing the rod vibration problem are [4]:

ð2mþ lÞA
q2u0

qx2
þ lA

qc0

qx
¼ rA

q2u0

qt2
� q,

mIK1
q2c0

qx2
� ð2mþ lÞAc� lA

qu0

qx
¼ rIK2

q2c0

qt2
ð19Þ
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with the associated boundary conditions (at each end of the rod):

u0; Qu ¼ ð2mþ lÞA
qu0

qx
þ lAc0,

c0; Qc ¼ mIK1
qc0

qx

� �
, ð20Þ

where m ¼ E= 2 1þ nð Þð Þ; l ¼ nE= 1þ nð Þ 1� 2nð Þð Þ and I is the geometrical moment of the rod cross section.
Parameters K1 and K2 are calculated from the formulas:

K1 ¼
12

p2
; K2 ¼ K1

1þ n
0:87þ 1:12n

� �2

. (21)

These parameters are a set of coupled equations for the longitudinal displacement and lateral contraction.
Since there are two dependent variables u0 and c0, and the coefficients are constant, to obtain the spectrum
relation one assumes solutions in the forms:

u0 ¼ Ue�iðkx�otÞ; c0 ¼ Ce�iðkx�otÞ. (22)

After the substitution into differential equations the following system is obtained:

�ð2mþ lÞAk2
þ rAo2 �iklA

iklA �mIK1k
2
� ð2mþ lÞAþ rIK2o2

" #
U

C

� �
¼

0

0

� �
. (23)

Setting the determinant equal to zero gives the characteristic equation for determining k as

a2k
4
þ a1k2

þ a0 ¼ 0, (24)

where

a2 ¼ mAIK1ð2mþ lÞ,

a1 ¼ 4mðmþ lÞA2 � rIK2o2ð2mþ lÞA� rAo2mIK1

� 	
,

a0 ¼ �rAo2 Að2mþ lÞ � rIK2o2
� 	

. ð25Þ

This characteristic equation is quadratic in k2 and therefore, there are two-mode pairs in contrast to the
single pair of the elementary and Love theories.

4.1. Rod spectral element for the Mindlin– Herrmann theory

The general longitudinal displacement and rotation of a rod can be written as

û0 ¼ A0R1e
�ik1x þ B0R2e

�ik2x � C0R1e
�ik1ðL�xÞ �D0R2e

�ik2ðL�xÞ;

ĉ0 ¼ A0e
�ik1x þ B0e

�ik2x þ C0e
�ik1ðL�xÞ þD0e

�ik2ðL�xÞ;
(26)

where Ri are the amplitude ratios given by

Ri ¼
ikilA

�ð2mþ lÞAk2
i þ rAo2

; i ¼ 1; 2: (27)

Constants A0, B0, C0 and D0 can be found from the following nodal conditions:

û0ðx ¼ 0Þ ¼ q̂1; ĉ0ðx ¼ 0Þ ¼ q̂2,

û0ðx ¼ LÞ ¼ q̂3; ĉ0ðx ¼ LÞ ¼ q̂4. ð28Þ
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The forces within the element can be expressed by differentiating the formulas from Eq. (26) and by using
the following nodal conditions:

F̂1 ¼ ð2mþ lÞA
qû0

qx
þ lAc0 for x ¼ 0; F̂ 2 ¼ mIK1

qĉ0

qx

 !
for x ¼ 0,

F̂3 ¼ ð2mþ lÞA
qû0

qx
þ lAc0 for x ¼ L; F̂ 4 ¼ mIK1

qĉ0

qx

 !
for x ¼ L, ð29Þ

Taking into account the formulas for the axial displacement and rotation with the formulas for calculating
constants A0, B0, C0 and D0 it is possible to express the nodal forces as a function of nodal displacements. The
relation between the nodal displacements and the nodal forces contains the square and symmetric matrix
which is the dynamic stiffness matrix Kdf of the rod spectral element based on the Mindlin–Herrmann theory
(see Appendix A for the exact mathematical form).

4.2. Throw-off spectral element for the Mindlin– Herrmann theory

For the throw-off element based on the Mindlin–Herrmann theory the axial displacement and the rotation
are given by:

û0 ¼ A0R1e
�ik1x þ B0R2e

�ik2x;

ĉ0 ¼ A0e
�ik1x þ B0e

�ik2x:
(30)

The constants A0 and B0 can be found from the following nodal conditions:

û0ðx ¼ 0Þ ¼ q̂1; ĉ0ðx ¼ 0Þ ¼ q̂2. (31)

The forces within the element can be expressed by manipulating Eqs. (26)–(28) as before. The nodal forces
can be found using the following nodal conditions:

F̂1 ¼ ð2mþ lÞA
qû0

qx
þ lAc0 for x ¼ 0; F̂ 2 ¼ mIK1

qĉ0

qx

 !
for x ¼ 0. (32)

The square and symmetric dynamic stiffness matrix for the throw-off element based on the Mind-
lin–Herrmann theory is calculated with the same algorithm as for the elements described previously. Specified
formulae can be found in Appendix A, Eq. (A.4).

5. Three-mode theory

A spectral element model of rod based on the three-mode theory, with the same geometry as three
previously described elements, is presented in Fig. 1c. The element has two nodes with three degrees of
freedom per node (the longitudinal displacement and two rotations). The displacements in the three-mode
theory of a rod are assumed as follows [4]:

uðx; yÞ ¼ u0ðxÞ þ f0ðxÞ � h 1� 12
y2

h2

� �
,

vðx; yÞ ¼ c0ðxÞ � y, ð33Þ

where f0 is a function which describes a parabolic distribution of the axial displacement along the height of
the rod, and h denotes the height of the rod.

The differential equations for the three-mode theory, governing the rod vibration problem are given by [4]

ð2mþ lÞA
q2u0

qx2
þ lA

qc0

qx
¼ rA

q2u0

qt2
� q,

mI
q2c0

qx2
� ð2mþ lÞAc� lA

qu0

qx
� 2mAh

qf0

qx
¼ rI

q2c0

qt2
,

ð2mþ lÞI
q2f0

qx2
� 5mAfþ

10

48
mAh

qc0

qx
¼ rI

q2f0

qt2
, ð34Þ
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with the associated boundary conditions (at each end of the rod):

u0; Qu ¼ ð2mþ lÞA
qu0

qx
þ lAc0,

c0; Qc ¼ mI
qc0

qx
� 24

f0

h

� �
,

f0; Qf ¼
48

5
ð2mþ lÞI

qf0

qx
. ð35Þ

They are a set of coupled equations for the longitudinal displacement and the lateral contractions. Since
there are three dependent variables u0, f0 and c0, and the coefficients are constant, to obtain the spectrum
relation one has to assume solutions in the forms:

u0 ¼ Ue�iðkx�otÞ; c0 ¼ Ce�iðkx�otÞ; f0 ¼ Fe�iðkx�otÞ. (36)

After substituting Eq. (36) into Eq. (34) a system of algebraic equations can be written as

�ð2mþ lÞAk2
þ rAo2 �iklA 0

iklA �mIk2
� ð2mþ lÞAþ rIo2 2ikmAh

0 � 10
48
imAh �ð2mþ lÞIk2

� 5mAþ rIo2

2
664

3
775

U

C

F

2
64

3
75 ¼

0

0

0

2
64
3
75. (37)

Setting the determinant equal to zero gives the characteristic equation for determining k as

a3k
6
þ a2k

4
þ a1k

2
þ a0 ¼ 0, (38)

where

a3 ¼ �AI2m 2mþ lð Þ
2,

a2 ¼ �AI 2mþ lð Þ 4Amðmþ lÞ � Ið4mþ lÞro2
� 	

,

a1 ¼ A �20A2m2ðmþ lÞ þ AI l2 þ 13lmþ 18m2
� �

ro2 � I2ð5mþ 2lÞr2o4
� 	

,

a0 ¼ rAo2 5Am� rIo2
� �

Að2mþ lÞ � rIo2
� 	

. ð39Þ

This characteristic equation is cubic in k2 and therefore there are three-mode pairs in contrast to the single
pair of the elementary and Love theories, as well as the two-mode pairs of the Mindlin–Herrmann theory.

5.1. Rod spectral element for the three-mode theory

The general longitudinal displacement and rotations of a rod can be written as

û0 ¼ A0R4e
�ik1x þ B0R5e

�ik2x þ C0R6e
�ik3x þD0R4e

�ik1ðL�xÞ þ E0R5e
�ik2ðL�xÞ þ F 0R6e

�ik3ðL�xÞ,

ĉ0 ¼ A0R1e
�ik1x þ B0R2e

�ik2x þ C0R3e
�ik3x �D0R1e

�ik1ðL�xÞ � E0R2e
�ik2ðL�xÞ � F0R3e

�ik3ðL�xÞ,

f̂0 ¼ A0e
�ik1x þ B0e

�ik2x þ C0e
�ik3x þD0e

�ik1ðL�xÞ þ E0e
�ik2ðL�xÞ þ F0e

�ik3ðL�xÞ, ð40Þ

where the amplitude ratios are given by

Ri ¼
ð2mþ lÞIk2

i þ 5mA� rIo2

�10
48
imAh

; i ¼ 1; 2; 3,

Ri ¼
ikjlA

�ð2mþ lÞAk2
j þ rAo2

Rj ; i ¼ 4; 5; 6; j ¼ 1; 2; 3. ð41Þ

The constants A0, B0, C0, D0, E0 and F0 can be found from the following nodal conditions:

û0ðx ¼ 0Þ ¼ q̂1; ĉ0ðx ¼ 0Þ ¼ q̂2; f̂0ðx ¼ 0Þ ¼ q̂3,

û0ðx ¼ LÞ ¼ q̂4; ĉ0ðx ¼ LÞ ¼ q̂5; f̂0ðx ¼ LÞ ¼ q̂6, ð42Þ

which lead to the system of equations presented in Appendix B (Eq. (B.4)).
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The forces within element can be expressed using the formulas from Eq. (35). The nodal forces can be found
using the nodal conditions as follows:

F̂ 1 ¼ ð2mþ lÞA
qû0

qx
þ lAĉ0 for x ¼ 0,

F̂ 2 ¼ mI
qĉ0

qx
� 24

f̂0

h

 !
for x ¼ 0,

F̂ 3 ¼
48

5
ð2mþ lÞI

qf̂0

qx
for x ¼ 0,

F̂ 4 ¼ ð2mþ lÞA
qû0

qx
þ lAĉ0 for x ¼ L,

F̂ 5 ¼ mI
qĉ0

qx
� 24

f̂0

h

 !
for x ¼ L,

F̂ 6 ¼
48

5
ð2mþ lÞI

qf̂0

qx
for x ¼ L. ð43Þ

Taking into account the formulas for the axial displacement and the lateral contractions and using the
formulas for calculating constants A0, B0, C0, D0, E0 and F0 as a function of the nodal displacements the
relation between the nodal forces and the nodal displacements can be calculated. The square and symmetric
matrix in this equation denotes the dynamic stiffness Kdf matrix of the spectral element based on the three-
mode theory (Appendix B, Eq. (B.4)).

5.2. Throw-off spectral element for the three-mode theory

For the throw-off spectral element based on the three-mode theory the axial displacement and the lateral
contractions are:

û0 ¼ A0R4e
�ik1x þ B0R5e

�ik2x þ C0R6e
�ik3x,

ĉ0 ¼ A0R1e
�ik1x þ B0R2e

�ik2x þ C0R3e
�ik3x,

f̂0 ¼ A0e
�ik1x þ B0e

�ik2x þ C0e
�ik3x. ð44Þ

Constants A0, B0 and C0 can be found from the following nodal conditions:

û0ðx ¼ 0Þ ¼ q̂1; ĉ0ðx ¼ 0Þ ¼ q̂2; f̂0ðx ¼ 0Þ ¼ q̂3. (45)

The forces within the element can be expressed using the formulas from Eq. (35). The nodal forces can be
found using the following nodal conditions:

F̂1 ¼ ð2mþ lÞA
qû0

qx
þ lAĉ0 for x ¼ 0,

F̂2 ¼ mI
qĉ0

qx
� 24

f̂0

h

 !
for x ¼ 0,

F̂3 ¼
48

5
ð2mþ lÞI

qf̂0

qx
for x ¼ 0. ð46Þ

The square and symmetric dynamic stiffness matrix Kdt of the throw-off spectral element based on the three-
mode theory can be calculated by taking into account the formulas for the axial displacement and the lateral
contractions and using the formulas for calculating constants A0, B0 and C0. The aforementioned expressions
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allow expressing the nodal forces as a function of the nodal displacements. A detailed form of the dynamic
stiffness matrix for the spectral rod throw-off element based on the three-mode theory can be found in
Appendix B, Eq. (B.4).

6. Numerical examples

The main idea of these numerical calculations is to demonstrate wave propagation phenomena in a rod for
the different theories. The results obtained for the elementary, the Love, the Mindlin–Herrmann and the three-
mode theories are presented and discussed below.

Computations were carried out for a cantilever steel rod of the following dimensions: length 4m, width
0.02m, height 0.02m. The following material properties are utilised: Young’s modulus 210GPa, Poisson ratio
0.3 and density 7850 kg/m3. Two different signals were used as a source of propagating waves. Fig. 2 illustrates
the comparison of analysed signal shapes, duration times and their FFTs. Each of the signals presented is a so-
called ‘package’ obtained from the multiplication of a triangle and a sinusoidal function. The signal marked as
case (a) is a slower signal assumed to last for 0.3ms. It allows excitation of waves of frequencies up to 80 kHz.
The faster signal presented as case (b) lasts for 0.15ms and allows excitation of waves of frequencies up to
160 kHz.

The next figure (Fig. 3) illustrates the results obtained for the elementary and the Love rod theories.
Absolute wavenumbers obtained from the two theories are first presented as a function of the excitation
frequency. It is clear that for the data used, differences between the wavenumbers appear above 95 kHz. For
lower frequencies the wavenumbers are virtually the same for the two models considered.

Fig. 4 illustrates the absolute wavenumbers obtained for the Mindlin–Herrmann theory. The wavenumber
corresponding to the first mode shows similar behaviour to that for the Love theory. The second mode has a
cut-off frequency. This frequency is inversely proportional to the thickness or the radius of the rod which
means that it increases for slender rods. For better understanding the real and the imaginary parts of
wavenumbers are shown separately in Figs. 5 and 6.

The next two figures present a comparison of reflected signals obtained for the elementary and modified
theories. For better illustration of differences the accelerations calculated for all the models are normalized
according to their maximum value. Fig. 7 presents a comparison of results obtained for the two excitation
signals tested. The first plot (Fig. 7(a)) illustrates the differences in the reflected signal obtained for the
elementary and Love theories for the slower signal from Fig. 2(a), the second plot (Fig. 7(b)) shows the
Fig. 2. Comparison of test excitation signals in time and frequency domains.



ARTICLE IN PRESS

Fig. 3. Absolute values of the wavenumbers obtained from the elementary (___) and Love (� � �) theories.

Fig. 4. Absolute values of the wavenumbers obtained from the two-mode theory, (� � �) k1, (___) k2.

Fig. 5. Real part of the wavenumbers obtained from the two-mode theory, (� � �) k1, (___) k2.

Fig. 6. Imaginary part of the wavenumbers obtained from the two-mode theory, (� � �) k1, (___) k2.
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Fig. 7. Reflected signals obtained from the elementary and Love theories: (a) for the slower excitation signal; (b) for the faster excitation

signal.

Fig. 8. Reflected signals obtained for the elementary and Mindlin–Herrmann theories: (a) for the slower excitation signal; (b) for the faster

excitation signal.
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differences for the faster signal shown in Fig. 2(b). It can be seen that more visible differences between the
results can be observed for higher frequencies excited by the input signal.

Fig. 8 presents a comparison of results obtained for both excitation signals, for the models based on the
elementary and Mindlin–Herrmann rod theories. The meaning of the plots is the same as in Fig. 7. The
differences between the results for the models are much more visible when the input signal excites higher
frequencies. As can be noticed from Fig. 8(b) some additional reflections appeared with the Mind-
lin–Herrmann theory, which were not present in the case of the elementary or Love theories.
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The contribution of the second wave mode to the vibration is presented in Fig. 9. The plot gives the ratio
between the longitudinal mode U and the rotation mode C. As the wavenumbers can be complex three plots
showing the contribution to the real, imaginary and the absolute values ((a), (b) and (c), respectively) are
presented. It can be concluded that in the frequency range considered (up to 0.14MHz) the wave amplitude
associated with the second mode (C) is purely real. For higher frequency values the wave has imaginary part
only which means that the contribution of the second mode (C) to the vibration is decaying. This leads to the
conclusion that the Mindlin–Herrmann theory used for higher frequency ranges gives results which have no
physical meaning.

The following figures illustrate the frequency dependence of the wavenumbers calculated for three-mode
theory. Fig. 10 shows the change in the absolute value of the wavenumbers. The wavenumber for the first
mode shows similar behaviour to the first wavenumber for the Love theory. The second and third mode have
Fig. 9. The contribution of the second wave mode to the vibration.

Fig. 10. Absolute values of the wavenumbers obtained from the three-mode theory, (� � �) k1, (___) k2, (UUUU) k3.

Fig. 11. Real part of the wavenumbers obtained from the three-mode theory, (� � �) k1, (___) k2, (....) k3.
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also cut-off frequencies. These frequencies are inversely proportional to the thickness or radius of the rod.
Real and imaginary parts of each wavenumber are shown in Figs. 11 and 12.

Next figure presented (Fig. 13) illustrates the differences between the elementary and three-mode theories
based on responses recorded for excitation signals from Fig. 2. It can be seen from the graphs that the
differences between the results for the two models are considerable; this may be due to the fact that the
excitation frequency is higher than the cut-off frequency (Fig. 13(b)). For this high frequency signal
the dissipation of the reflected signals for the analysed example is clearly visible. It may also be noticed that as
in the case of the Mindlin–Herrmann theory, additional reflection appear for the faster signal for the three-
mode theory as well. They were not present in the case of the elementary or Love theories. It is worth
mentioning that due to the fact that within this frequency range the third mode is not excited, results obtained
for the Mindlin–Hermann and three-mode theories are very similar.

The contribution of the second and third wave mode to the vibration of the rod is presented in Fig. 14. It
shows the real, imaginary and the absolute values (marked as (a), (b) and (c) respectively) of the ratio between
the longitudinal mode U and the two rotation modes C and F. It can be seen that in the frequency range
considered, when the real part of the rotation mode share is taken into account for higher frequencies the
contribution of the second mode increases, while the contribution of the first rotation mode stays at the same
Fig. 12. Imaginary part of the wavenumbers obtained from the three-mode theory, (� � �) k1, (___) k2, (UUUU) k3.

Fig. 13. Reflected signals obtained for the elementary and three-mode theories: (a) for the slower excitation signal; (b) for the faster

excitation signal.
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Fig. 14. The contribution of the second (___) and third (� � �) wave mode to the vibration.
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level. When the imaginary parts of the rotational mode shares are investigated it is concluded that the
vibration of the rod is attenuated by the rotational modes. Generally, it is concluded that in the frequency
range considered the absolute wave amplitude associated with the second mode (C) is not higher than 1% of
the first mode amplitude (U), while the wave amplitude associated with the third mode (F) is not higher than
25% of the first mode amplitude (U). For the three-mode theory when higher frequency values are taken into
account the C and F modes share stay on the same level, which suggests that the three-mode theory is more
adequate for higher frequency ranges.
7. Conclusions

The paper presents a family of spectral elements for wave propagation modelling in rod-like structures. The
dynamic stiffness matrices based on the Love, Mindlin–Herrmann and three-mode theories for all considered
models are developed. The elementary theory assumes a uniform distribution of the axial displacement along
the cross section. The Love theory takes into account the additional kinetic energy. The Mindlin–Herrmann
theory assumes that the transverse displacement is not negligible, whereas the most advanced model (three-
mode theory) takes into account the non-uniform distribution of the axial displacement and the transverse
deformation.

The results of numerical calculations demonstrate considerable differences especially for higher frequencies.
The differences found between the models are a function of the excitation frequency. When the excitation
frequency increases the differences also increases, because the higher modes, not included in the elementary or
Love rod theories, are also excited.

The contribution of the additional modes, analysed within the Mindlin–Herrmann and three-mode theories,
on the vibration is also investigated. It may be concluded that the Mindlin–Herrmann theory gives proper
results for frequencies up to 250 kHz (Fig. 4) which may imply that this sort of performance could be
generalisable for other structural systems. For higher frequencies the contribution of the second mode
increases and the results obtained may have no physical meaning. This is why in this system for excitation
frequencies higher than 250 kHz the three-mode theory should be applied. For this theory the contribution of
the second and third mode becomes stable and does not exceed 8% of the first vibration mode.

A practical remark is that specific material and geometrical data are required before choosing a model for
the analysis of wavenumbers. When the excitation signal frequency does not excite higher modes the Love
theory gives very good results. Otherwise, for signal frequencies which excite higher modes, the
Mindlin–Herrmann or the three-mode theory should be applied.
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Appendix A

Appendix A presents the detailed forms of mathematical formulae describing the dynamic stiffness matrices
for the developed spectral element based on the Mindlin–Herrmann rod theory. With the equation presented
below the unknown constants A0, B0, C0 and D0 obtained for the spectral rod element based on the
Mindlin–Herrmann theory as a function of displacements, can be expressed as

A0

B0

C0

D0

2
6664

3
7775 ¼

R1 R2 �R1p1 �R2p2

1 1 p1 p2

R1p1 R2p2 �R1 �R2

p1 p2 1 1

2
66664

3
77775

�1
q̂1

q̂2

q̂3

q̂4

2
66664

3
77775, (A.1)

with p1 ¼ e�ik1L, p2 ¼ e�ik2L. Next matrix equation is given to show the formula relating the spectral forces
with the spectral displacements (Mindlin–Herrmann rod theory):

F̂ 1

F̂ 2

F̂ 3

F̂ 4

2
66664

3
77775 ¼

�ik1M1R1 þM2 �ik2M1R2 þM2 ik1M1R1 þM2ð Þp1 ik2M1R2 þM2ð Þp2

�ik1M3 �ik2M3 �ik1M3p1 �ik2M3p2

ik1M1R1 �M2ð Þp1 ðik2M1R2 �M2Þp2 �ik1M1R1 �M2 �ik2M1R2 �M2

ik1M3p1 ik2M3p2 ik1M3 ik2M3

2
66664

3
77775

A0

B0

C0

D0

2
6664

3
7775,

(A.2)

with M1 ¼ ð2mþ lÞA, M2 ¼ lA, M3 ¼ mIK1. After combining the Eq. (A.2) and Eq. (A.1) one obtains the
equation with the dynamic stiffness matrix for the spectral rod element based on the Mindlin–Herrmann
theory.

For the spectral throw-off element based on the Mindlin–Herrmann theory the matrix relating the unknown
constants with displacement is given by

A0

B0

" #
¼

R1 R2

1 1

� ��1 q̂1

q̂2

" #
, (A.3)

whereas the matrix describing spectral forces as a function of the displacement (after taking into account the
Eq. (A.3)) looks as follows:

F̂1

F̂2

" #
¼
�ik1M1R1 þM2 �ik2M1R2 þM2

�ik1M3 �ik2M3

" #
A0

B0

" #
. (A.4)
Appendix B

Appendix B shows the detailed form of mathematical formulae describing the dynamic stiffness matrices for
the developed spectral element based on the three-mode rod theory. For the spectral rod element based on that
theory the matrix relating the spectral displacements and the unknown constants is given by

A0

B0

C0

D0

E0

F0

2
6666666664

3
7777777775
¼

R4 R5 R6 R4p1 R5p2 R6p3

R1 R2 R3 �R1p1 �R2p2 �R3p3

1 1 1 p1 p2 p3

R4p1 R5p2 R6p3 R4 R5 R6

R1p1 R2p2 R3p3 �R1 �R2 �R3

p1 p2 p3 1 1 1

2
6666666664

3
7777777775

�1
q̂1

q̂2

q̂3

q̂4

q̂5

q̂6

2
6666666664

3
7777777775
, (B.1)
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In the case of the throw-off spectral element based on the three-mode theory the matrix relating the
unknown constants with the spectral displacements is given by

A0

B0

C0

2
64

3
75 ¼

R4 R5 R6

R1 R2 R3

1 1 1

2
64

3
75
�1 q̂1

q̂2

q̂3

2
64

3
75. (B.3)

The dynamic stiffness matrix is formulated by joining the matrix from Eq. (B.3) with the expressions
describing the spectral forces which leads to the following equation:

F̂ 1

F̂ 2

F̂ 3

2
64

3
75 ¼

�ik1M1R4 þM2R1 �ik2M1R5 þM2R2 �ik3M1R6 þM2R3

�ik1M3R1 �M4 �ik2M3R2 �M4 �ik3M3R3 �M4

�ik1M5 �ik2M5 �ik3M5

2
64

3
75

A0

B0

C0

2
64

3
75. (B.4)
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